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Characteristics of Unilateral Fin-Line
Structures with Arbitrarily Located Slots

L. P. SCHMIDT, TATSUO ITOH, SENIOR MEMBER, IEEE, AND HOLGER HOFMANN

Abstract— Generalized unilateral fin-line configurations for extended
millimeter-wave applications are analyzed using the equivalent transmis-
sion-line concept in the spectral domain. Numerical results for the
frequency-dependent propagation constants and characteristic impedances
of various structures are presented.

I. INTRODUCTION

IN-LINE STRUCTURES have proved to be a useful
tool for the development of integrated millimeter-wave
components (e.g., [1]). Conventional fin-line structures pro-
posed to date are the unilateral, bilateral, and the antipodal
fin-line [2], all of which are symmetric with respect to the
E-plane of the shielding waveguide.
In order to improve the flexibility of this class of wave-
guiding structures and, thus, extending the range of appli-
cation and increasing the possible degree of integration,
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Fig. 1.

this paper analyzes more general types of unilateral fin-lines
with up to three slots in symmetric as well as asymmetric
positions (Fig. 1(a)).

This analysis includes the solution of the eigenvalue
problem yielding the frequency-dependent propagation
constants as well as the calculation of carefully defined
characteristic impedances. Numerical results will show the
improved flexibility that can be achieved by making use of
this extended class of fin-line structures.
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II. THEORY

A. Formulation of the Eigenvalue Problem

Even more than a conventional spectral-domain analysis,
the equivalent transmission-line concept in the spectral
domain, as introduced earlier [3], is ideally suited for the
derivation of matrix eigenvalue equations for planar or
quasi-planar waveguiding structures. Though leading to the
same results, the latter method has the advantage of being
carried out in a much simpler way, and, therefore, was
chosen to analyze the generalized unilateral fin-line struc-
tures.

Since in the absence of any metallization on the surfaces
of the fin-line substrate the modal spectrum consists of
TM-to-y and TE-to-y modes only, the modes of the struc-
ture being studied are superimposed from these fields. This
is done by introducing the Fourier transform for the y-field
components

E (o, y)= f_+:Ey(x, »)-el dx (1)

and similarly for ﬁy(a, »), where & takes discrete values
a=n-w/(2b), n=0,+1,+2,+3,---.

The remaining field components can be derived from
Maxwell’s equations. From the inverse transform

. 1 ptoeo . '
p Bz — .p —Nax+Bz),
E(x,y)-e 5 f_w Efa,y)-e da (2)

it can be seen that the fields are superpositions of inhomo-
geneous plane waves propagating in the (ax+B8z) direc-
tion. Taking this fact into account, we transform the (x, z)
into (u, v) coordinates, u being adjusted to the direction of
propagation and v and y being transverse to it. Now the
plane waves in the u direction are decomposed into TM-to-y
(E,, E,, H,) and TE-to-y (H,, E,, H,) fields. Returning to
the originally considered structure, the partwise metalliza-
tion in the (y=a+2d) plane is taken into account by
introducing current density components J,, J,, the first
generating TM, and the second generating TE fields only.
The wave impedances in the y direction can be defined as
Zewi =E/H, =Y, [jwee; and Zrg, =E,/H, =jop/v,,
where v, =ya? +B% —¢,k? is the propagation constant in
the ith region.

Up to this point, all considerations are quite general and
have only been illustrated by our special example. For the
formulation of the eigenvalue problem, only a few steps
have to be accomplished. First, equivalent transmission
lines for the TE and the TM fields are introduced, as
shown in Fig. 1(b). Using simple transmission-line theory,
the following relations between the “voltages” and “cur-
rents” can easily be derived:

J(a,a+2d)=Y{ E (a,a+2d) (3)
(4)

Returning to (x, z) coordinates, we obtain the equations

J(a,a+2d)=Y} E(a,a+2d).
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[ =(N- Y5+ N2 YR )E +NN(=Y; + YH)E, (5)
J; :NxNz(* Ylel + Ylhl )Ex +(N22' Ylel +Nx2' YIP'I)Ez (6)

where N, =a/Va® +8%, N,=8/Va* +B>.

These equations relate the strip current densities and the
tangential electric slot field components to each other. The
expansion of the slot field components into series, and the
application of Galerkin’s method in the spectral domain
finally lead to a homogeneous eigenvalue matrix equation,
from which nontrivial solutions are derived by searching
for the zeros of the matrix determinant {4]. -

B. Calculation of the Characteristic Impedance

The definition of characteristic impedances for modes
other than genuine TEM is, to a certain degree, an arbi-
trary matter. Nevertheless, a carefully defined characteris-
tic impedance is, in addition to the propagation constant, a
valuable design support for practical applications.

Following the argument of Jansen in {5}, we used, for the
slotline type fin-line, an impedance definition via the slot
voltage and the power associated with that slot

_ Vi
Za=5p-

™

This definition even holds for coupled or uncoupled slots
which are asymmetrically located. The slot voltage of the
ith slot can directly be found by integrating the corre-
sponding slot field series expansion

V= [ Eu(x, at+2d)-dx (8)
whereas, the calculation of the power

()

may be performed in the spectral domain, after Parseval’s
theorem has been applied to (9)

P =Ref02“f023(Ex,.H; —E, H*)dydx

+ o0
P= —f;—ll;Ren=2_°o Aza(EXiﬁ; _Eyiﬁ:)dy' (10)

By transforming the transverse-field components E’x, Ey,
I-?x, 1-7), to those transverse components Eu, Hv,Ev,ﬁu
that occurred as voltages and currents in the equivalent
transmission lines, the equivalent transmission line concept
is introduced again. Since the y dependence of these quan-
tities is known, the integration can be accomplished. A
final transform to the field amplitudes of the expanded
E_, E, components yields, in combination with the slot
voltage, the desired characteristic impedance.

HIL

For a highly efficient numerical evaluation of the eigen-
value and impedance calculation, it is important to use
well-suited expansion functions for the series expansion of
the slot field. Therefore, sinusoidal functions, corrected by
an “edge condition” term were used for the expansion (ith

NUMERICAL RESULTS
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Fig. 2. Slot-width dependence of the transmission-line parameters for a
single slot in central position. Identical quantities for Fig. 2-Fig. 6:
f=33 GHz; 24=7.112 mm; 25=3.556 mm; 24=0.125 mm; €, =2.2.

: effective dielectric constant e,y _ 0. }: characteristic
impedance Z,.

slot: w, =slot width, s, =slot center coordinate)
(B, B0} = { D o), Bt fonl6))

o fo 3. Acosisin) [ma(x—s, —w,/2)/w]

\/1—[2()c—s,)/w,]2

fors, —w, /2<x<Is,+w, /2

{foms Lam}=1{0,0},  otherwise.
These functions are readily Fourier transformed analyti-
cally.

Convergence checks with up to five expansion functions
for each component show that for reasonable slot widths, a
0.5-percent accuracy for both the propagation constant
and the impedance can be achieved by using only two
elements of the expansion.

The fin-line structures analyzed with the present method
include configurations of up to three slots in symmetric as
well as asymmetric positions. In all cases, the fin-line was
composed from a WR-28 waveguide and a substrate with a
dielectric constant of 2.2 and a thickness of 0.125 mm.

Fig. 2 shows the slot-width dependence of both the
effective dielectric constant e = B2?/k?, and the char-
acteristic impedance Z, of the dominant mode for a single
slot in symmetric position for several frequencies. The
frequency behavior of Z, agrees well with the bilateral case
as investigated in [6] for a wide frequency range. In this
symmetric case, only even spectral terms (r even) and even
expansion functions (m even) need to be considered for the
computation of the dominant mode, of course.

In Fig. 3, a single slot is continuously shifted away from
the symmetric position towards one of the sidewalls. This
results in only a small change of e, whereas the imped-
ance change, especially for broader slots, is more signifi-
cant.
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Fig. 3. Characteristics of a single slot shifted away from the central
position towards one of the sidewalls.
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Fig. 4. Two symmetrically positioned slots. Abscissa is their distance
from the sidewalls.
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Fig. 5. Shift of two strongly coupled slots from a centered position
towards a sidewall.

The characteristic of two coupled slots in symmetric
positions with varying distance from each other is shown in
Fig. 4. The “symmetric” behavior of the odd mode with
respect to s=5/2 becomes intelligible if a (not disturbing)
electric wall is added in the symmetry plane x=5. In fact,
the characteristic of the odd mode was confirmed by taking
only half of the waveguide with one asymmetric slot into
account. Especially for strongly coupled slots, both €, and
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Fig. 6. Unilateral fin-line with three slots, one in central position, being
approached from both sides by smaller slots.

Z, of the even mode are very sensitive to a change of the
slot distance.

The influence of a shift of two such strongly coupled
slots out of a centered position is only small in the begin-
ning, as shown in Fig. 5. This is a consequence of the high
concentration in the slot region. The characteristic imped-
ances of the two slots, of course, obtain different values
now, as one slot is closer to the approached sidewall than
the other.

In the last example, Fig. 6, the influence of two narrow
slots, approaching a broader slot in symmetric position, is
investigated. The figure includes the propagation constants
of the three propagating modes as well as the impedances
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of the first and most important mode. Symmetrically
tapered transitions from the one- to three-slot case proba-
bly excite only this first mode so that the line parameters
of the centered slot can be tuned without changing the
width or the position of this slot.

IV. CONCLUSIONS

New unilateral fin-line configurations have been pro-
posed that provide a wider range of flexibility for the
development of integrated millimeter-wave components.
The method presented includes the calculation of both the
frequency-dependent propagation constant and a carefully
defined characteristic impedance, and can be applied to
bilateral symmetric or asymmetric fin-line structures as
well.
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