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Characteristics of Unilateral Fin-Line
Structures with Arbitrarily Located Slots

L. P. SCHMIDT, TATSUO ITOH, SENIOR MEMBER, IEEE, AND HOLGER HOFMANN

A fmtract— Generalized unilateral fin-line configurations for extended ‘1

millimeter-wave applications are analyzed using the equivalent transmis- 1
sion-line concept in the spectral domain. Numerical results for the o-d

frequency-dependent propagation constants and characteristic impedances

of various structures are presented.

L

I. INTRODUCTION

F IN-LINE STRUCTURES have proved to be a useful ?

tool for the development of integrated millimeter-wave 20

components (e.g., [1]). Conventional fin-line structures pro-

posed to date are the unilateral, bilateral, and the antipodal

fin-line [2], all of which are symmetric with respect to the
1

E-plane of the shielding waveguide.

In order to immove the flexibility of this class of wave-
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guiding structure: and, thus, extending the range of appli-
F1g. 1. Generalized undateral fin-line (a) cross section, (b) equivalent

trausmlssion lines for TM-to-v and TE-to-y waves
cation and increasing the possible degree of integration,

this paper analyzes more general types of unilateral fin-lines

with up to three slots in symmetric as well as asymmetric
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II. THEORY

A. Formulation of the Eigenvalue Problem

Even more than a conventional spectral-domain analysis,

the equivalent transmission-line concept in the spectral

domain, as introduced earlier [3], is ideally suited for the

derivation of matrix eigenvalue equations for planar or

quasi-planar waveguiding structures. Though leading to the

same results, the latter method has the advantage of being

carried out in a much simpler way, and, therefore, was

chosen to analyze the generalized unilateral fin-line struc-

tures.

Since in the absence of any metallization on the surfaces

of the fin-line substrate the modal spectrum consists of

TM-to-y and TE-to-y modes only, the modes of the struc-

ture being studied are superimposed from these fields. This

is done by introducing the Fourier transform for they-field

components

qa,y)=j+mEy(x, y). e~axdx (1)
—m

and similarly for BY( a, y), where a takes discrete values

a=n. r/(2 b), n=(), *l, &2, &3,0...

The remaining field components can be derived from

Maxwell’s equations. From the inverse transform

EY(x, y).e–~~z = &~_+~EY(a, y). e–~(dx+pz). da (2)
Ca

it can be seen that the fields are superpositions of inhomo-

geneous plane waves propagating in the (ax+ ~z) direc-

tion. Taking this fact into account, we transform the (x, z)

into (u, v) coordinates, u being adjusted to the direction of

propagation and o and y being transverse to it. Now the

pl;ne waves in the u directio~ are decomposed into TM-to-y

(E,, ~U, fiO) and TE-to-y (HY, ~o, fiU) fields. Returning to

the originally considered structure, the “partwise metalliza-

tion in the (y= a + 2d ) plane is taken into account by

introducing current density components ~U, JO, the first

generating TM, and the second generating TE fields only.

The wave impedances in they direction can be defined as

Z~~i = ~U /HO = y, /jucOci and ZT~, = ~0 /HU = jup/y,,

where ,,={~ is the propagation constant in
the i th region.

Up to this point, all considerations are quite general and

have only been illustrated by our special example. For the

formulation of the eigenvalue problem, only a few steps

have to be accomplished. First, equivalent transmission

lines for the TE and the TM fields are introduced, as

shown in Fig. 1(b). Using simple transmission-line theory,

the following relations between the “voltages” and “cur-

rents” can easily be derived:

~W(a, a+2d)=Y~1” EU(a, a+2d) (3)

~o(a, a+2d)=Yf11 .l?Y(a, a+2d). (4)

Returning to (x, z) coordinates, we obtain the equations

Jx = (N:. Y:, +N:. Yf, )ix +NXNZ(– Y:, + YJ)EZ (5)

~ =NJVZ(– Y:, + Yf,)ix +(N~” Y;, +N;. Yfi)~z (6)

where NX = a//~, N== ~//~.

These equations relate the strip current densities and the

tangential electric slot field components to each other. The

expansion of the slot field components into series, and the

application of Galerkin’s method in the spectral domain

finally lead to a homogeneous eigenvalue matrix equation,

from which nontrivial solutions are derived by searching

for the zeros of the matrix determinant [4].

B. Calculation of the Characteristic Impedance

The definition of characteristic impedances for modes

other than genuine TEM is, to a certain degree, an arbi-

trary matter. Nevertheless, a carefully defined characteris-

tic impedance is, in addition to the propagation constant, a

valuable design support for practical applications.

Following the argument of Jansen in [5], we used, for the

slotline type fin-line, an impedance definition via the slot

voltage and the power associated with that slot

z,_ R
c’ 2Pi “

(7]

This definition even holds for coupled or uncoupled slots

which are asymmetrically located. The slot voltage of the

i th slot can directly be found by integrating the corre-

sponding slot field series expansion

JVXi= EXi(x, a+2d)”dx (8)
s,

whereas, the calculation of the power

pl=R=~2”~2B(EXiH; –EYiH: ) dydx (9)

may be performed in the spectral domain, after Parseval’s

theorem has been applied to (9)

By transforming the transverse-field components EX, l?Y,

fiX, fi~, to those transverse components flv, HO, fro, HU

that occurred as voltages and currents in the equivalent

transmission lines, the equivalent transmission line concept

is introduced again. Since they dependence of these quan-

tities is known, the integration can be accomplished. A

final transform to the field amplitudes of the expanded

l?., ~z components yields, in combination with the slot

voltage, the desired characteristic impedance.

III. NUMERICAL RESULTS

For a highly efficient numerical evaluation of the eigen-

value and impedance calculation, it is important to use

well-suited expansion functions for the series expansion of

the slot field. Therefore, sinusoidal functions, corrected by

an “edge condition” term were used for the expansion (i th
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Fig. 2, Slot-width dependence of the transmission-line parameters for a

single slot in central position. Identicaf quantities for Fig. 2– Fig. 6:

~=33 GHz; 2a=7.112 mm; 2b=3.556 mm; 2d=o.125 mm; 61=2.2.
—: effectwe dlelectnc constant c.ff; -. . . ----- - ): characteristic

impedance Z,.

slot: Wi = slot width, s, = slot center coordinate)

These

tally.

(m J

~ ~ ~ ~= {cos,sin} [nzn-(x~s, -wi/2)/wZ]
XLITI + zzm ,

1– [2(x–s J/w1]2

{fx,mlLlm}={o>o},

functions are readily

fors, –w, /2<x<s, +w, \2

otherwise.

Fourier transformed analyti-

Convergence checks with up to five expansion functions

for each component show that for reasonable slot widths, a

0.5-percent accuracy for both the propagation constant

and the impedance can be achieved by using only two

elements of the expansion.

The fin-line structures analyzed with the present method

include configurations of up to three slots in symmetric as

well as asymmetric positions. In all cases, the fin-line was

composed from a WR-28 waveguide and a substrate with a

dielectric constant of 2.2 and a thickness of 0.125 mm.

Fig. 2 shows the slot-width dependence of both the

effective dielectric constant C,ff = P 2/k 2, and the char-

acteristic impedance Zc of the dominant mode for a single

slot in symmetric position for several frequencies. The

frequency behavior of Z, agrees well with the bilateral case

as investigated in [6] for a wide frequency range. In this

symmetric case, only even spectral terms (n even) and even

expansion functions (m even) need to be considered for the

computation of the dominant mode, of course.

In Fig. 3, a single slot is continuously shifted away from

the symmetric position towards one of the sidewalls. This

results in only a small change of Ceff, whereas the imped-

ance change, especially for broader slots, is more signifi-

cant.
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Fig. 3. Characteristics of a single slot shifted away from the centrat
position towards one of the sidewalls.
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Fig. 4. Two symmetrically positioned slots. Abscissa is their distance

from the sidewafls
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Fig. 5. Shift of two strongly coupled slots from a centered position

towards a sidewatl.

The characteristic of two coupled slots in symmetric

positions with varying distance from each other is shown in

Fig. 4. The “symmetric” behavior of the odd mode with

respect to s= b/2 becomes intelligible if a (not disturbing)

electric wall is added in the symmetry plane x= b. In fact,

the characteristic of the odd mode was confirmed by taking

only half of the waveguide with one asymmetric slot into

account. Especially for strongly coupled slots, both C,ff and
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Fig. 6. Unilateral fin-line with three slot:, one in central position, being

approached from both sides by smaller slots.

2= of the even mode are very sensitive to a change of the

slot distance.

The influence of a shift of two such strongly coupled

slots out of a centered position is only small in the begin-

ning, as shown in Fig. 5. This is a consequence of the high

concentration in the slot region. The characteristic imped-

ances of the two slots, of course, obtain different values

now, as one slot is closer to the approached sidewall than

the other.

In the last example, Fig. 6, the influence of two narrow

slots, approaching a broader slot in symmetric position, is

investigated. The figure includes the propagation constants

of the three propagating modes as well as the impedances

355

of the first and most important mode. Symmetrically

tapered transitions from the one- to three-slot case proba-

bly excite only this first mode so that the line parameters

of the centered slot can be tuned without changing the

width or the position of this slot.

IV. CONCLUSIONS

New unilateral fin-line configurations have been pro-

posed that provide a wider range of flexibility for the

development of integrated millimeter-wave components.

The method presented includes the calculation of both the

frequency-dependent propagation constant and a carefully

defined characteristic impedance, and can be applied to

bilateral symmetric or asymmetric fin-line structures as

well.
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